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ABSTRACT: This paper investigates the asymptotic properties of the OLS-based estimator
of the long-run MPC in a dynamic consumption function, y; = c+og—1-+52+ue, where z is
integrated of order one, I(1). It is known that the estimated long-run MPC, ¢ = /(1 — &),
where & and § are OLS estimators, is v T—consistent and asymptotically distributed as
normal when z is fixed or is a stationary random variable and u; is serially uncorrelated.
It is well known that & and [ are inconsistent estimators if uy is serially correlated. In this
paper it is shown that, in such circumstances, § is super consistent and has a non-standard
asymptotic distribution when 2 is J{1) and u, is serially correlated. The effects of serial
correlation in u; on the asymptetic distributions of the short-run and long-run estimators

are also examined. The theoretical results were supported by Monte Carlo simlations,
which also examined the implications for statistical inference when the integrated regressor

is misspecified as stationary.
1 Introduction

In this paper we study the asymptotic prop-
erties of the estimated long-run marginal
propensity to consume {MPC} in a dynamic
consumption function given by

Y =€+ oy + B+

where y and z are, respectively, consump-
tionn and income, ¢ i a constant term, and
u; is assumed to be a stationary AR(1)
process. 'The long-run MPC is defined as
8(ee, ) = G/(1 — o) {simply denoted as &
hereafter) and we consider a non-linear esti-
mator of the long-run MPC, 6 = 3/(1 — &),
where & and [ are the OLS estimators.
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wishes to acknowledge the financial support of the
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Maddala and Rao (1973) studied a sim-
ilar mode! in the absence of a constant
term and derived the limiting bias when
z is a stationary AR(1) process, but did
not examine any distributional properties
of the estimators. Maekawa et al. (1996)
{(henceforth MYTH) analysed the same
model, showed that the OLS estimators are

v T—inconsistent, and that vT(& — ) and

VT3 — 3) are distributed as asymptotic
normal even if z; is integrated of order 1.

The model examined in this paper is
a special case of Park and Phillips(1989).
However, the analysis differs in that the
long-run implications of the estimated co-
efficients, as well as their asyrmaptotic distri-
butions, are examined and derived in the
present paper.  We consider two models,
with and without a constant ¢, and derive

the asymptotic distributions of § in both
cases. As & and [ are inconsistent when
is serially correlated, it might be anticipated
that & is also inconsistent. Somewhat strik-
ingly, it is shown that & is superconsistent.



The plan of this paper is as follows. We
specify the model and estimator in detail in
section 2, and derive the asymptotic distri-
bution of § in section 3. In section 4 we
present the results of a Monte Carlo study
to illustrate the theoretical results and ex-
tract the implications for statistical infer-
ence when z; is misspecified as stationary.
(The detailed derivations and proofs are
available on request from the authors.) In
what follows, = signifies weak convergence
in distribution and the summation operator

S denotes 7 .

2 Model and Estimator

We deal with the following dynamic model:

Y= Cc+ay.1 +PBntw, o<l
uy = pugy vy, | p <1

(1)

2t = Azt + &, | A]S
t=1,2,-T

where v~ NID(0,02}) and g ~
NID(0,o2) are assumed to be independent.
Sinee 2 is non-stationary when A= 1, 3 is
also non-stationary.

The standardized QLS estimator of

(¢, a, B) is given as

( T(a - o) ) — AR (2)

WATEE)
where
A=
1 ﬁlﬁ 2 Y1 “fj% pIE
&Sy Ll T}E;y:—wt
A5 Y yeizn  groz
1 %Eut
B= | g 3 w1
fis 2o Uta

Defining 6§ = 3/(1 — «), it is straight-
forward to show thaf the estimation error
T{(6 — &) can be written as

T - 6) =T(:% - £)

ey 1

Jiﬂ&—m+Tw—ﬁ)

1—-d

(3)

The last term is more convenient for obtain-
ing the asymptotic distribution of T(§ — §)
than is the second term. To do so, it is nec-
essary to evaluate each element in (2) as-
ymptotically. It follows from (1) that, for
A=1:

:yt"“"l - k]
1 —
where

g oo =
ay = — 14 Do s Do AUyl

(note that y:—; and 2z are cointegrated - see
MYTH for details).

Applying (3), the functional central limit
theorem, and the continuous mapping the-
orem (see Phillips (1987)), and performing
algebra similar to that in MYTH, we can
derive the following Lemma.

Lemma 1.

Let B, and B. be Brownian motions
obtained by

%th = B, and %Z‘Et = Be.

Then we have the following asymptotic
distributions.

(i) Aa=1:
(@) = T = 15B(1)

(&) % 3z = ﬁ [ Be{r)dBy(r)
(c) % 2 Y1t

= (£2)(15) [ B{r)dBo(r) + P,

where P = ﬁz;ﬁf;ﬁ

d) st Syem1 = 125 [ Be(r)dr
e) dr Dy1z = 72 [ BX(r)dr
F) = et = [ B(r)dr

9) 7 T me = 5BL(1) + ]

{
(
(
(
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Proof. See Appendix A.

This leads to the following Theorems,
Corollary and Remarks.
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Theorem 1

(i) When A =1 in equation (1), we have

plim{& — a) = +*
plim(# — 3) = &*

VT(@ — o~ 5"} = N(0,0%)

VTG~ B~ ) = (£ N(0,0%)

where 0° = a‘:mg(ig“g)zgggg
== ap)(i g, and &7 =157

(ii) When |A| < 1 in equation (1), we
have
VT(& — o~ a*) = N(0,02)
VT(B -8 -57) = N(0,03)
VT(6— 6 —8) = N(0,c)

where o = Di
9 1
P=a= p)"""‘”?
1ty cr‘-
D; = aloZSy + aii)
e e

1

2. B 2.2 2
Cra_ [1_gilmp)D1] Jsa'v

1
—n—n—-‘.ﬁu:ﬂummv—v—v—v—vl_z X
(A=a2)(1-p)2 7

2 (z)

2 ..
(f’gm

{142 {1 +eplol
(£ + G

8 *
aA}Q

(s~

5% = 2=a (j = and
o2 = T Cats o
0g = ( 1oy }

Proof. See Appendix B.

Applying Lemma 1 to {2}, and performing
lengthy algebraic manipulations, yields the
following main result.

Theorem 2

When A =1 in eguation {1}, we have



. & [ B.(r)dB,(r) + F

where
F o
~{15B,(1) + t51B:(1)} [ Be(r)dr+
T u{B(1) + o2}

(i+a)po
(1—ap)(1—p?) (1) 202+ (1-p)a?

=

Proof. See Appendix B.

Corollary 1. When the constant term ¢ =
0 and A =1 in (1), we have

T —6) =

—LIBE(T)C’ZBU(T) 21 ok {Bz( )+U§}
(1 —a) [ Bi(r)d '

(6)

Proof. The distribution in {5)
includes terms associated with [ B.(r)dr,
which arises from the limits of 3 y:..1 and
Y. 21 in the case with a constant term.
Therefore, those terms vanish in (5) when
the constant term is zero, and so (§) follows.

Remark 1 § is /T —inconsistent for p {0
and [M < 1 (it is /T —consistent only

if p = 0 and A < 1). Since YTE=0

N (%,1) because of Theorem 1{ii},
is inwalid to draw inferences based on the
asymptomc normality of the standardized

b3

5, i e., ===, where 5z is an estimator of
&

vJvar(8), the standard ervor of b, which is
approzimated by (%)’V@r(@)(m)!g 4
with 6 = (¢, o, 5)'.

Remark 2 Comparing (5) and (6), the as-
ymptotic distributions depend on the exis-
tence of the constant term ¢ but not on the
level of ¢ itself.

o
J B2(r)dr - (f Ba(r)dg))z}

Remark 3 The OLS estimators & and f3

are /T —inconsistent but § is T— consistent
because the two asymptotic biases cancel out

each other in 8. From (8) it is not difficult to
see the cancellation. Furthermore, the dis-

tributions of VT (& —a) and VT(83 - ) are
asymptotically normal, but T{6 — §) has a
non-standaerd asymptotic distribution.

Remark 4 Maddala and Rao (1973)
showed for the case |A| <1 and c=0:

plim(& — a) ==

plim(B - B) = — 25+

where

pas
o = (T-ap)(1-p%)
2 1+ il
i (o2 + e

As noted by MYTH, " = ~* when A = 1.
However Maddala and Rao did not examine
any asymptodic distributional properties of
the estimators.

3 A Quasi-Maximum Likelihood Es-
tirnator

It is intractable o derive a closed-form solu-
tion of the full maximum iikelihood estima-
tor for ¢, e, 3, p and & in (1) because of the
non-linearity. In what follows, we shall re-
strict attention to the quasi-maximum like-
lihood estimator(QMLE) when p is given.

The log-likelihood functicn is given by
Lic,a, B5p) =

—é—in(%{) - %} Ino2 ~ 2

1 T
55T Dbt Ui

}t is straightforward to see that

Uy =Yg — PYe—1 — {1 — p) — a(yi—1 — pys—2}
—B{z — pzi—1)

=Y, ~C~aY 1~ B4

where
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C - C(i - ,0)
Yy =y — PYi-1,
Zy = 2t — PE—1-

Inserting ¥; and Z; into L{c, o, F; p) and
differentiating £ with respect t¢ C.a, [
yields the MLE C, &, g for C, &, 5 as the so-
lution of the three normal equations:

ac A %

56 = Z(Yt —C =&Yy - PZ;) =0
b=

ar £

— = —» (Vi

oo 2

ac T

L S(Yi-

a3 ;

Notice that if p is given, the C’,&,B are
simply the OLS estimators for the trans-
formed equation

=C 4o+ 082 +u. (T)

It follows immediately that the OLS es-

timators ', & [3 are consistent because the
17, are nob serlally correlated, and are un-
correlated with Vi and Zi—1. A consistent
estimator of p is obtained in a similar man-
ner to MYTH, as follows, First, rewrite the
sransformed equation (7) as

y=C+ayper + 0y +z +d'z +(§3

where ¢/ = a+p, ¥ = —ap, ¢ = 3, and

d = ~fp, so that —

>st1mat0r% C a', b’

@ = p is a consistent estimator of p. From

these considerations, we propose the follow-
ing iterative procndhro

= p. As the OLS
“, cf’ are consistent,

(i) Obtain the consistent estimator p
above and use it as an initial value of p,
denoted by b,

(i) Transform the model (1) to the above
equation (8).

(iil) Caleulate C, &, 3 from (8) by the OLS
method and obtain ¢ = % .

(iv) Calculate the residuals from the esti-
mated original regression (1), @iy =y — & —

&y — P2z
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{v) Tterate steps {i}-(iv) until & &, 8 con-
verge.

We will call the resulting estimators

& &, 3 the QMLE. MYTH considered the
two—step estimator obtained from steps (i)
to (iii} in the absence of a constant term.

The asymptotic distributions of &, 3 and
§ = I’—% are obtained by setting p = 0 in
Theorems 1 and 2 and in Corollary 1. Con-
cerning the QMLE &%, 3" and &% = £

T—a 1
the asymptotic distributions are the same

—C — @Yoy — BZt)}/g__l = (}as those for 4, 6 and 6 in the section 2.

C - aYie| — BZt)Zt =00 4 Simulations

Monte Carlo experiments were performed
on the following specific model:

= 1+ 0381 + 0.4z + g,
wo=puy -+, | pl<l,0l =025
zg = Azg-1+ &gy A< L,e2=1.0

b=1,2, T

where the long-run MPC, based on o ==
038 and 3 = 04, is § = 0.645. In the
experimnents, the parameters are specified
as p = 0.0,05,08;2 = 05107 =
30,100,500, 1000. We calculated d = (6 —
&}/s; 5000 times for each parameter combi-
nation, where s; is the estimated standard
error. The asymptotic distribution of d is

N(¥L6*,1) for |A] < 1.0,

From Figures 1-8, we observe the follow-
ing:

(D) A< 1

1. When p == 0, the distribution of d is

very close to the standard normal, even
when T is small, and hence the bias of

& is very small.

2. When g £ 0, the mean of d becomes
large as the sample size T increases be-
cause the mean is proportional to vT
as in Remark 1. As pincreases, the nor-
mal approximation deteriorates badly.



2y A=1:

1. §is always T—consistent.

2. The asymptotic distribution of § is
more concentrated than the normal
(the kurtosis is larger than 3, as in the
case of the normal).

5 Concluding Remarks

We have investigated the asymptotic prop-
erties of the Ol.S-based estimator of the
long-run MPC when the income variable is
integrated of order 1. In such a case, stan-
dard statistical inference which relies on as-
ymptotic nermality is biased and misiead-
ing. More importantly, inferences based on
asymptotic normality is much worse when
the independent variable is stationary (|A] <
1) and the disturbances are serially corre-
lated because the standardized estimator of
the long-run MPC is v/T — inconsistent, so

that the standardized ratio d = (§ —#8)/s ;s
also /T — inconsistent. The theoretical

resuits were supported by Monte Carlo sim-
ulations, which alse examined the implica-
tions for statistical inferences when the in-
tegrated regressor is misspecified as station-
ary.
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